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Problem Background

Application needs tuned for optimal performance
Performance tuning is challenging

m Heterogeneous processors
m Configuration diversity

Auto-tuning needed
m Performance Portability

Approach: Implementation selection for a multi-variant
component

3/40



Component Interface and Implementations

Component Interface
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Implementation variant
= Platforms (CPU, accelerator

cores)

Algorithms

Tunable parameter settings

Compiler transformations

Meta-data

m Dependencies

m Resource requirements

m Deployment descriptors

m Performance prediction models
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Staged Composition

Contributed or generated
variants with static
performance predictions

Static composition:
at deployment time,
user-guided or
off-line autotuning +
static narrowing of
set of candidates
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Guiding Composition: Empirical Models

m Analytical model
m Empirical model

m No or little understanding of the target architecture
m Off-line Empirical Models: Feed sampling data (training
examples) into a prediction model, e.g. SVM, C4.5
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Off-line Empirical Models: Pros and Cons

= + Avoid “cold start”
m + Controllable tuning process

m - Tuning overhead

“Cold start” Effect

Iready tasks s

20 40 60 80 100 120 140 160 180

Example from Dastgeer et al. (ParCo’2011) on SkePU/StarPU integration,
Coulombic potential grid execution, with 3 successive executions
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Zoom into the Cons

m A closer look at off-line overhead

m Exhaustive execution is not feasible
m Previous work: Stargazer (random sampling)

m Training examples (Sampling data) is vital for performance
prediction models

8/40



Attack the Cons: Observations

® In the context of performance tuning: a concrete example
(Matrix-matrix multiplication)
m Smart sampling by heuristics
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Adaptive Sampling

m Sample only vertices of a space

= Recursive decomposition (cutting) for open spaces, controlled
by maximum depth, etc
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Formalization: Runtime context (e.g. Input Size)

= Context Property Value Space (PVS) is a n-dimensional
finite space
m A run-time context instance consists of n context property
values maps to a point in the PVS
m PVS has 2" vertices (corner points)
m Closed and open subspaces

m Closed subspace: a subspace where a variant wins on all
vertices. It heuristically approximate “uninteresting’” subspaces
m Open subspace: otherwise

m Recursive space decomposition
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Convexity Assumption from the Observation

m “In real life, the world is smoothly changing, instances close by
most of the time have the same labels, and we need not worry
about all possible labelings.”

Ethem Alpaydin in “Introduction to Machine Learning, second edition”

m Our Convexity Assumption

m If all vertices of a subspace share the same winner, then the
winner wins in all points of the subspace statistically
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Adaptive Sampling In the Big Picture

m Off-line: adaptive sampling, tree construction

® On-line (Run-time)
m Load the tree
m Prediction

m Closed space: look up winner on one vertex
m Open space: Euclidean-based predictor
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Techniques for Adaptive Sampling

Light oversampling
m Sample one extra point in the middle
m Detect holes
m Small increase in overhead
= May increase prediction accuracy
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Further Techniques Based on Adaptive Sampling

Thresholding
m Relative threshold: abs(vi — vimin)/Vmin <=0

m Stop splitting early
m Reduce training overhead
m May decrease prediction accuracy
Vl Vl
® @
V2 Vl
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Further Techniques Based on Adaptive Sampling

Implementation Pruning

= Only winners of the vertices will involve in the future sampling
of the subspace

m Reduce overhead remarkably if many implementation variants
are available for an interface

m May lead to loss of optimization potential
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Further Techniques Based on Adaptive Sampling

Implementation Pruning

= Only winners of the vertices will involve in the future sampling

of the subspace

m Reduce overhead remarkably if many implementation variants
are available for an interface

m May lead to loss of optimization potential
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Platform

Name CPU GPU oS Compiler
Cora 16 Intel(R) Xeon(R) | 3 GPUs: two nVidia | RHEL| gcc 4.1.2
CPU  X5550 @ | Tesla C2050 and | 5.6 and nvcc
2.67GHz one Tesla C1060 Vv0.2.1221
Fermi 8 Intel(R) Xeon(R) | two Tesla M2050 | 3.2.1-| gcc 4.6.2
CPU E5520 @ | GPUs 2- and nvcc
2.27GHz ARCH| Vv0.2.1221
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Benchmarks

Benchmark Feature modeling | Range Implementation variants
Matrix- row size, column | (30, 30, 30) to | Sequential implementation and
matrix size of first ma- | (300, 300, 300) a variant by loop rearrange-
multipli- trix, column size ment, CUDA impl., BLAS impl.,
cation of second matrix Pthread impl. and five of its vari-
(MM) ants from loop rearrangement
Sorting array size; discre- | (1,0) to | bubble sort, insertion sort,
(ST) tization of array | (10k,10) merge sort, quick sort

values  distribu-

tion (sampled

number of inver-

sions)
Path finder | row; column (1,1) to | OpenMP implementation,
(PF) (10k,20k) CUDA implementation
Backpropagatjoarray size (1k) to (100k) OpenMP implementation,
(BP) CUDA implementation
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Prediction Accuracy (%) on Cora: Base-line adaptive off-line sampling

Path finder (Rodinia)

Back propagation (Rodinia) B Depth 3

[ Depth 2
H Depth 1
H Depth 0
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Prediction Accuracy (%) on Fermi: Base-line adaptive off-line sampling

Path finder (Rodinia)

Back propagation (Rodinia) 5 Depth 4
H Depth 3

X Depth 2

Sorting H Depth 1

H Depth 0

M

Matrix Multiplication
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Other Metrics

m Absolute runtime overhead: 4 - 23 us
m Relative runtime overhead: 0.2%

m Average sampling rate: 0.053%
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Test against Convexity Assumption
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Test against Convexity Assumption
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Thresholding Effect: Training Time
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Thresholding Effect: Prediction Accuracy
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MM: Depth 4
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Thresholding Effect: Prediction Accuracy
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Thresholding Effect: Prediction Accuracy

BP: Depth 4
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Oversampling Effect: Prediction Accuracy
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Oversampling Effect: Prediction Accuracy
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Oversampling Effect: Prediction Accuracy
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Oversampling Effect: Training Time
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Implementation Pruning Effect: Training Time
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Implementation Pruning Effect: Prediction Accuracy
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Combo Effect: Training Time
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Combo Effect: Prediction Accuracy

100 120

95 100

EY 80

85 60

80 40

75 20

70 0

Depth 0 Depth 1 Depth2 Depth3 Depthd. Depth 0 Depth 1 Depth 2 Depth3 Depth 4
BP MM

w—————————————— 120
100 100

80 80

60 60

40 40

20 20

Depth 0 Depth1 Depth2 Depth3 Depth4 Depth 0 Depth1 Depth2 Depth3 Depth4

PF ST

B Adaptive Sampling. M Adaptive Sampling with combo of oversampling

and impl pruning.

36 /40



Adaptive Sampling vs Random Sampling
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Adaptive Sampling vs Random Sampling
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Adaptive Sampling vs Random Sampling
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Conclusion

m Convexity Assumption holds for all benchmarks used, more to
test

m Three techniques help to decrease training time or increase
prediction accuracy

m Thresholding
m Light Oversampling
m Implementation pruning

m The right combination can combine the advantages

m Adaptive sampling shows benefits against random sampling

More questions please contact me: lu.li@liu.se, +46704759692
40 / 40



	Motivation
	Approach
	Results
	Conclusion

